Direct genetic selection of two classes of R17/MS2 coat proteins with altered capsid assembly properties and expanded RNA-binding activities.
نویسندگان
چکیده
RNA challenge phages are derivatives of bacteriophage P22 that enable direct genetic selection for a specific RNA-protein interaction. The bacteriophage P22 R17 encodes a wild-type R17 operator site and undergoes lysogenic development following infection of susceptible bacterial strains that express the R17/MS2 coat protein. A P22 R17 derivative with an OcRNA site (P22 R17 [A(-10)U]) develops lytically following infection of these strains. RNA challenge phages can be used to isolate second-site coat protein suppressors that recognize an OcRNA sequence by selecting for lysogens with a P22 R17 [Oc] phage derivative. The bacteriophage derivative P22 R17 [A(-10)U] was used in one such scheme to isolate two classes of genes that encode R17 coat proteins with altered capsid assembly properties and expanded RNA-binding characteristics. These mutations map outside the RNA-binding surface and include amino acid substitutions that interfere with interactions between coat protein dimers in the formation of the stable phage capsid. One class of mutants encodes substitutions at the highly conserved first and second positions of the mature coat protein. N-terminal sequence analysis of these mutants reveals that coat proteins with substitutions only at position 1 are defective in post-translational processing of the initiator methionine. All selected proteins possess expanded RNA-binding properties since they direct efficient lysogen formation for P22 R17 and P22 R17 [A(-10)U]; however, bacterial strains that express the protein mutants remain sensitive to lytic infection by other P22 R17 [Oc] bacteriophages. The described selection strategy provides a novel genetic approach to dissecting protein structure within RNA-binding proteins.
منابع مشابه
Functional recognition of fragmented operator sites by R17/MS2 coat protein, a translational repressor.
The R17/MS2 coat protein serves as a translational repressor of replicase by binding to a 19 nt RNA hairpin containing the Shine-Dalgarno sequence and the initiation codon of the replicase gene. We have explored the structural features of the RNA operator site that are necessary for efficient translational repression by the R17/MS2 coat protein in vivo . The R17/MS2 coat protein efficiently dir...
متن کاملMS 2 coat protein mutants which bind Q β RNA
The coat proteins of the RNA phages MS2 and Qβ are structurally homologous, yet they specifically bind different RNA structures. In an effort to identify the basis of RNA binding specificity we sought to isolate mutants that convert MS2 coat protein to the RNA binding specificity of Qβ. A library of mutations was created which selectively substitutes amino acids within the RNA binding site. Gen...
متن کاملDirect genetic selection for a specific RNA-protein interaction.
The decision between lytic and lysogenic development of temperate DNA bacteriophages is determined largely by transcriptional regulation through DNA-binding proteins. To determine whether a heterologous RNA-binding activity could control the developmental fate of a DNA bacteriophage, a derivative of P22 was constructed in which the chosen developmental pathway is regulated by an RNA-binding mol...
متن کاملCrystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments.
In MS2 assembly of phage particles results from an interaction between a coat protein dimer and a stem-loop of the RNA genome (the operator hairpin). Amino acid residues Thr45, which is universally conserved among the small RNA phages, and Thr59 are part of the specific RNA binding pocket and interact directly with the RNA; the former through a hydrogen bond, the latter through hydrophobic cont...
متن کاملBacteriophage MS2 genomic RNA encodes an assembly instruction manual for its capsid
Using RNA-coat protein crosslinking we have shown that the principal RNA recognition surface on the interior of infectious MS2 virions overlaps with the known peptides that bind the high affinity translational operator, TR, within the phage genome. The data also reveal the sequences of genomic fragments in contact with the coat protein shell. These show remarkable overlap with previous predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 25 8 شماره
صفحات -
تاریخ انتشار 1997